Write your name and student number in the top left corner of each page

1. Determine the z-transform of the following sequences. Wherever convenient, use the properties of the z-transform to make the solution easier
(a) $x[n]=\left(\frac{1}{2}\right)^{n} \mu[-n]$
(b) $x[n]=\left(\frac{1}{3}\right)^{n} \mu[n]+4^{n} \mu[-n-1]$
(c) $x[n]=n\left(\frac{1}{2}\right)^{n} \mu[n+1]$
2. Consider the discrete-time LTI system described by the following simple difference equation:

$$
y[n]=x[n]-x[n-1]
$$

(a) determine the impulse respone of this system, $h[n]$, and plot $h[n]$.
(b) determine and write a closed-form expression for the DTFT, $H\left(e^{i \omega}\right)$, of $h[n]$
(c) plot the magnitude $\left|H\left(e^{i \omega}\right)\right|$ over the range $-\pi<\omega<\pi$
(d) plot the phase of $H\left(e^{i \omega}\right)$ over $-\pi<\omega<\pi$
3. Given the second order band stop filter with transfer function

$$
H_{B S}(z)=\frac{\kappa\left(1-2 \beta z^{-1}+z^{-2}\right)}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}
$$

where α, β and γ are real constants with $|\alpha|<1$ and $|\beta|<1$
(a) determine α and β so that the filter has a notch at $\omega_{0}=0.3 \pi$ and a band width of 0.3π
(b) what is the quality factor of the filter
(c) draw the magnitude response of $H_{B S}(z)$
4. Consider the discrete-time LTI system defined by the transfer function

$$
H(z)=\frac{20-24 z^{-1}+20 z^{-2}}{\left(2-z^{-1}\right)\left(2+2 z^{-1}+z^{-2}\right)}
$$

(a) draw the pole-zero diagram of $H(z)$
(b) given that the impulse response $h[n]$ of this system is causal, what is the ROC
(c) draw a block diagram which implements this transfer function in cascade form using $1^{\text {st }}$ and $2^{\text {nd }}$ order sections.
5. The sequence of Fibonacci number $f[n]$ is a causale sequence defined by

$$
f[n]=f[n-1]+f[n-2], n \geq 2 \text { with } f[0]=0 \text { and } f[1]=1
$$

(a) develop an exact formula to calculate $f[n]$ directly for any n
(b) show that $f[n]$ is the impulse response of a causal LTI system described by the difference equation $y[n]=y[n-1]+y[n-2]+x[n-1]$

Solutions for the exam of 07.06.2010:
1.
a) $x[n]=\left(\frac{1}{2}\right)^{n} \mu[-n]$

$$
\begin{aligned}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}= & \sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} \mu[-n] z^{-n}=\sum_{n=-\infty}^{0}\left(\frac{1}{2}\right)^{n} z^{-n}=|n=-m|= \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{-m} z^{m}=\frac{1}{1-2 z}
\end{aligned}
$$

The ROC is: $|z|<\frac{1}{2}$
b)

$$
\begin{gathered}
x[n]=\left(\frac{1}{3}\right)^{n} \mu[n]+4^{n} \mu[-n-1] \\
X(z)=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} z^{-n}+\sum_{n=-\infty}^{-1} 4^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} z^{-n}+\sum_{m=1}^{\infty} 4^{-m} z^{m}= \\
=\frac{1}{1-\frac{1}{3} z^{-1}}-1+\frac{1}{1-\frac{1}{4} z}
\end{gathered}
$$

The ROC is : $\frac{1}{3}<|z|<4$
c)

$$
\begin{gathered}
x[n]=n\left(\frac{1}{2}\right)^{n} \mu[n+1] \\
X(z)=\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n} z^{-n}=\sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n} z^{-n}
\end{gathered}
$$

use: $Z(n g[n])=-z \frac{d G(z)}{d z}$ where $g[n]=\left(\frac{1}{2}\right)^{n}$

$$
\begin{gathered}
G(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{2 z}{2 z-1} \\
\frac{d G(z)}{d z}=\frac{2(2 z-1)-4 z}{(2 z-1)^{2}}
\end{gathered}
$$

$$
X(z)=\frac{2 z}{(2 z-1)^{2}}=\frac{1}{2 z} \frac{1}{\left(1-\frac{1}{2} z^{-1}\right)^{2}}
$$

The ROC is: $0<|z|<\frac{1}{2}$
2.

$$
y[n]=x[n]-x[n-1]
$$

a)

$$
h[n]=\delta[n]-\delta[n-1]
$$

b)

Taking the Z transform on both sides of the equation for $y[n]$ we get:

$$
Y(z)=X(z)-X(z) z^{-1}
$$

then (keeping in mind that for the for determining the transfer function we need to have $x[n]=\delta[n])$, and that $Z(\delta[n])=1$:

$$
H(z)=\frac{Y(z)}{X(z)}=1-\frac{1}{z}
$$

To compute the DTFT, we have: $z=e^{j \omega}$, because we need to be on the unit circle:

$$
H\left(e^{j \omega}\right)=1-\frac{1}{e^{j \omega}}
$$

c)

$$
\left|H\left(e^{j \omega}\right)\right|^{2}=\left(1-e^{-j \omega}\right)\left(1-e^{j \omega}\right)=1-e^{j \omega}-e^{-j \omega}+1=2-2 \frac{e^{j \omega}+e^{-j \omega}}{2}=2(1-\cos \omega)
$$

d)

$$
\angle H\left(e^{j \omega}\right)=\arctan \left\{\frac{\operatorname{Im}\left(H\left(e^{j \omega}\right)\right)}{\operatorname{Re}\left(H\left(e^{j \omega}\right)\right)}\right\}=\arctan \left\{\frac{\sin \omega}{1-\cos \omega}\right\}
$$

3.

$$
H_{B S}(z)=\frac{1+\alpha}{2} \cdot \frac{1-2 \beta z^{-1}+z^{-2}}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}
$$

a)

Notch means that $\left|H_{B S}\left(e^{j \omega}\right)\right|=0$ for $\omega=0.3 \pi$, so:

$$
\begin{gathered}
0=1-2 \beta z^{-1}+z^{-2} \Rightarrow 2 \beta z^{-1}=1+z^{-2} \Rightarrow \beta=\frac{1+z^{-2}}{2 z^{-1}}= \\
=\frac{z^{2}+1}{2 z}=\left|z=e^{j \omega}\right|=\frac{e^{j 2 \omega}+1}{2 e^{j \omega}}\left(\frac{2 e^{-j \omega}}{2 e^{-j \omega}}\right)=\frac{2 e^{j \omega}+2 e^{-j \omega}}{4}=\cos (\omega)=\cos (0.3 \pi)
\end{gathered}
$$

A band-stop filter has two frequencies for which $\left|H_{B S}\left(e^{j \omega}\right)\right|=\frac{1}{\sqrt{2}}$. Their difference defines the stop band, and in our case it should be 0.3π radians wide. From this condition, we find that:

$$
\frac{2 \alpha}{(1+\alpha)^{2}}=\cos (0.3 \pi) \Rightarrow \alpha
$$

b)

The quality factor (Q - factor) is defined as: $Q=\frac{\omega_{0}}{\Delta \omega}$, where ω_{0} is the notch frequency, and $\Delta \omega$ is the stop-band width. In our case, $\omega_{0}=0.3 \pi$ and $\Delta \omega=0.3 \pi$, so we have:

$$
Q=\frac{0.3 \pi}{0.3 \pi}=1
$$

c)
4.

$$
H(z)=\frac{20-24 z^{-1}+20 z^{-2}}{\left(2-z^{-1}\right)\left(2+2 z^{-1}+z^{-2}\right)}
$$

a)

$$
H(z)=\frac{20-24 z^{-1}+20 z^{-2}}{\left(2-z^{-1}\right)\left(2+2 z^{-1}+z^{-2}\right)}=\frac{z\left(20 z^{2}-24 z+20\right)}{(2 z-1)\left(2 z^{2}+2 z+1\right)}
$$

Solving the numerator for zeros and the denominator for the poles, we can see that we have three zeros $(z=0, z=0.6 \pm i 0.8)$ and three poles ($z=0.5, z=-0.5 \pm i 0.5$).
b)

For a causal impulse response, the ROC is all of the Z-plane outside the outermost pole circle, i.e. $|z|>\frac{1}{2}$.
c)
5.
$f[n]=f[n-1]+f[n-2], n \geq 2$ with $f[0]=0$ and $f[1]=1$
a)

$$
f[n]=f[n-1]+f[n-2]
$$

Taking the Z transform and rearanging, we get:

$$
z^{2}-z-1=0
$$

which has the solutions: $z_{1}=\frac{1+\sqrt{5}}{2}$ and $z_{2}=1-z_{1}=\frac{1-\sqrt{5}}{2}$.
If we multiply the above equation by z^{n-1} we get:

$$
z^{n+1}=z^{n}+z^{n-1}
$$

Now, since z_{1} and z_{2} are solutions, we can express $f[n]$ as a linear combination like:

$$
f[n]=a z_{1}^{n}+b z_{2}^{n}
$$

furthermore:

$$
f[n+1]=a z_{1}^{n+1}+b z_{2}^{n+1}
$$

using the conditions that $f[0]=0$ and $f[1]=1$, we can solve the resulting system of two equations for a and b and get that $a=\frac{1}{\sqrt{5}}$ and $b=-\frac{1}{\sqrt{5}}$

So, finally we have the closed form expression:

$$
f[n]=\frac{z_{1}^{n}-\left(1-z_{1}\right)^{n}}{\sqrt{5}}
$$

where $z_{1}=\frac{1+\sqrt{5}}{2}$
b)

$$
y[n]=y[n-1]+y[n-2]+x[n-1]
$$

For an impulse response, the input to the system is a delta function, i.e. in our case one sample at $n=0$; so we can write: $x[n]=\delta[n]$. This in turn means that $\delta[n-1]=x[n-1]=0$. Thus we have:

$$
h[n]=h[n-1]+h[n-2] \equiv f[n]=f[n-1]+f[n-2]
$$

Sketches accompanying the solutions:

2

Figure 1

Figure 2

Figure 3

